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Combined forced convection and thermal radiation in the thermal entrance region of a 
circular pipe with axial heat conduction and thermal radiation are numerically studied in 
this article. The fluid is treated as a gray, absorbing and emitting medium with a fully 
developed velocity entering an isothermal semi-infinite long pipe. The method of moments 
is applied to approximately model the radiative heat transport process. The governing 
equations are solved by applying the SIMPLE algorithm. The effects of the Peclet number 
and its interaction with the conduction-radiation parameter and optical thickness on heat 
transfer behavior in the thermal entrance region are also investigated. The results obtained 
indicate that radiation plays a more important role at a low Peclet number than at a high 
Peclet number and that axial radiation is negligible when the Peclet number N> 20. The 
numerical results for limited cases of no axial heat conduction and radiation are also compared 
with the available data published in open literature. In all cases, good agreement with these 
studies was obtained. 
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I n t r o d u c t i o n  

Axial conduction and axial radiation at low Peclet numbers 
play an important role in combined heat transfer in a thermally 
developing pipe flow. In fact, Shah and London 1 and Kakac 
et al. 2 have extensively reviewed the relevant bibliography 
about hydrodynamically and thermally developing forced con- 
vection flow in a pipe. They have indicated that omitting axial 
heat conduction introduces an appreciable error in the compu- 
tation of the heat transfer rate. This can also happen when the 
fluid involved is a liquid metal, or the flow in the entrance 
region of the pipes is a low Reynolds number exchanger. 
Furthermore, the above cited literature indicates that the axial 
transport effect is negligible only when the Peclet number is 
greater than 50 in the case of a constant wall temperature and 
greater than 10 in the case of uniform heat flux along the pipe 
wall. Investigations by Millsaps and Pohlhausen, 3 Singh, 4 
Munakata,  5 Tan and Hsu, 6 Newman, ~ and Michelsen and 
Villadsen s have been directed toward a solution of the heat 
transfer problem of laminar flow in the entrance region of pipes 
at a low Peclet number. Millsaps and Pohlhausen, 3 and Singh 4 
solved this problem by series expansion, and the first four 
eigenvalues were calculated. Munakata 5 employed the results 
of these investigations and showed that fluid axial heat con- 
duction is not negligible for Pe < 10. Tan and Hsu, 6 Newman, 7 
Michelsen and Villadsen, a and Bayazitoglu and Ozisik 9 analyt- 
ically solved the problem of the thermal entrance region 
subjected to a constant wall temperature. Schmidt and Zeldin,~ 0 
Verhoff and Fisher, ~1 and Papoutsakis 12 numerically solved 
the same problem. 

At a high temperature, thermal radiation significantly affects 
the heat transfer behavior of laminar flow in a pipe. The 
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rigorous formulation of this combined convective-radiative 
heat transfer problem involves the solution of a nonlinear 
integro-differential equation. Einstein 13 considered and studied 
parabolic velocity distributed flow having constant properties 
with gray fluid in a circular pipe. Pearce and Emery 14 solved 
the same problem with both uniform and parabolic velocity 
distributions using the box method technique. Echigo et a1.15 
analyzed gas flow as a conjugated problem in the fluid domain. 
Using finite-difference techniques, these authors examined the 
energy equation with two-dimensional radiative heat transfer 
allowing an upstream propagation from the entrance of the 
heating section. Yener and Fong 16 investigated simultaneous 
radiation and forced convection in a thermally developing 
laminar flow. They solved the radiative equation with isotropic 
scattering using the Fourier series technique. 

Campo and Schuler 17 modeled the radiation transport process 
applying the method of moments (cf. Ozisik 18) and numerically 
solved the combined heat transfer problem. The method of 
moments is an approximation method using a system of partial 
differential equations to replace the integro-differential equation. 
Furthermore, their predicted results are in excellent agreement 
with Pearce and Emery ~4 and Echigo et al. ~5 Therefore, it is 
evident from the literature cited that most of these investigators 
are omitting either axial heat conduction, axial radiation, or 
both in their energy equations. However, neglecting axial heat 
conduction and axial radiation in the entrance region of a pipe 
at a low Peclet number causes a significant error in heat transfer 
results. Recently, Kim and Lee a 9 studied combined heat transfer 
in a thermally developing Poiseuille flow considering anisotropic 
scattering radiation. By employing the S-N discrete ordinant 
method to model the radiation effect, they reported the temper- 
ature profile and bulk temperature distribution. However, no 
Nusselt number distribution has been given in their paper. 

The above literature survey indicates that the effects of axial 
conduction and axial radiation have not been extensively 
investigated for the case of combined forced convection and 
thermal radiative heat transfer in a circular pipe. Therefore, the 
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objective of this paper is to present a numerical solution 
considering the combined effects of axial heat conduction and 
thermal radiation. Special attention has been devoted to what 
effect a small Peclet number has on the characteristics of this 
combined heat transfer process. 

P r o b l e m  f o r m u l a t i o n  

Basic assumptions and governing equations 

Shah and London 1 have summarized three sets of initial and 
boundary conditions for the extended Graetz problem. Figure 1 
illustrates the type A conditions as documented in their book. 
Since it does not take into account the effects of preheating 
before the fluid enters the pipe, the type A boundary condition 
may result in considerable error for many cases. However, type 
A initial and boundary conditions may be a valid idealization 
if good fluid mixing is obtained in the inlet header of a heat 
exchanger} The participating gas flows into a circular pipe 
with a parabolic velocity profile and a uniform entrance 
temperature, T~, at starting point, x=0 .  The surface temper- 
ature of the pipe is maintained at Tw (Tw > Te)- The coordinate 
system and the physical model are also illustrated in Figure 1. 
With the following assumptions that (1) the working medium 
is an incompressible steady hydraulic fully developed laminar 

T=T~ 

__ T--Te x ~ __ R IT=T" 

I 

Figure I Geometry and coordinate system 

flOW with constant physical properties; and (2) the gas is 
assumed to be a gray, emitting, absorbing, and nonscattering 
medium, the governing equations describing convective- 
radiative heat transfer inside a circular pipe can be written as 
follows: 

~T [-~32 T 1 t3 ( r  ~rT)]_div  () (1) 
PCvu ~x=kL t3x2 +r ~r 

In energy Equation 1, the last term on the right-hand side 
represents the contribution of gas radiation that can be modeled 
by the method of moments (cf. OzisiktS). Previous studies 
indicate that approximation of the moment is more accurate 
in the optically thick rather than the optically thin limit. 
However, for the realistic case of nongray gaseous radiation, 
a major portion of the emission and absorption of thermal 
radiation occurs near the band center, where the medium is 
optically thick at these frequencies. Therefore, the inaccuracy 
of the method of moments at the optically thin region is not a 
limitation of its application to the nongray medium. 

t ~  

div Cl = - / x[l°(t) '  S ) -  lb(T)] &o = -- x(G - 4aT 4) (2) 
d4 i t  

where irradiation, G = 4 n I  o, can be found by solving 

t~2G+! ~ ( 2 ~F Or/ (3) 

The fully developed gas velocity, u, will be in the form of: 

u(r) = 2Urn(1 -- r2/R 2) (4) 

The boundary conditions for Equations 1 and 3 are 

@ x = 0 T = Te = constant 0 < r < R (5a) 

dG - - =  -3~¢(G-4aT 4) 0 < r < R  (5b) 
8X 

(5c) @ x > 0  TIr=R=Tw 

N o t a t i o n  

A Variable coefficient, Equation 13 
B Variable coefficient, Equation 14 
Cp Specific heat [J kg-  1 K -  1] 
D h Hydraulic diameter of the pipe = 2R I-ml 
G Total irradiation [W m-21 
G* Dimensionless value of G, Equation 6 
I Intensity of radiation [W m-  2 sr- 1], Equation 2 
k Thermal conductivity [W m-  1 K - 1] 
N Conduction-radiation parameter, Equation 6 
Pe Peclet number, Equation 6 
Pr Prandtl number, Pr=v/~ 
q Heat flux [W m-  2], Equation 1 
r Dimensional radial coordinate [m] 
R Radius of the pipe [m] 
Re Reynolds number, Re=(umDh)/v 
S Path vector, Equation 2 
T Temperature of fluid [K] 
u Velocity [m s- l-I 
u,, Mean velocity [m s-1] 
u* Dimensionless velocity 
u ~' Artificial velocity in the r/direction, Equation 17 
v ~ Artificial velocity in the ~ direction, Equation 17 
x Dimensionless axial coordinate [m] 
x* Dimensionless axial coordinate 

Greek symbols 
c< Thermal diffusivity [m 2 s-1] 
fl Extinction coefficient [m-  1] 
F ~,. Artificial viscosity in the ~/direction, Equation 17 
F,~ Artificial viscosity in the ¢ direction, Equation 17 
ew Emissivity of wall 
~/ Dimensionless axial coordinate 
0 Dimensionless temperature, T/Tw 
0b Dimensionless bulk temperature, Tb/Tw 
0e Dimensionless inlet temperature, Te/Tw 
x Volumetric absorption coefficient [m-  1] 
/~ Dynamic viscosity [kg m-  1 s - t] 
v Kinematic viscosity [m 2 s- 1] 

Dimensionless radial coordinate 
p Density l-kg m-  3] 

Stefan-Boltzmann constant [W m-  2 K -  4] 
r Optical thickness 
~b General dimensionless variable, Equation 17 

Direction, Equation 2 

Subscripts 
b Mean bulk 
c Conduction 
e Entrance 
r Radiation 
t Total 
w Wall (circumferential) 
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OG/Orl,- R = 3e~x 4 (5d) and 
- 2(2 -~e~) (G - 4eTw ) 

(a)' r /= l  

0T/0r[,=o =0 

OG/Or[, = o = 0 

@ x = ~  T = T ~  0 < r < R  

0G 
- 0  0 < r < R  

0X 

Since the opening of the inlet duct is nonreflecting, the 
assumption of a pseudo black wall is applied for the radiation 
boundary condition in Equation 5b. At the outlet of the duct, 
the uniform temperature distribution suggests that incident 
radiation, G, will not change with the axial location, as given 
in Equation 5h. 

(5e) 

(5f) 

(5g) 

(5h) 

Dimensionless governing equation 

By introducing the following dimensionless quantities, 

x* = x/(DhPe ) ~ = r/R 0 = T/T~ u* = U/Um 

G* = G/(4trT~) Dh = 2R N = (kx) / (4aT 3) (6) 

"c = K,D h Pe = RePr = (umD h)/O~ 

governing Equations 1 and 3 can be written as: 

u,  O0 _ 1 020_~0(~ OOX\ .~2 . 
0x* ae 2 0x .2 ~ ~ ) + N  (G*-O")  (7) 

and 

" t - Z :  ~ =3z2(G*--O 4) (8) 

Transformation of the governing equations 

Due to the fact that the boundary condit ion at x = oo is difficult 
to manage in the numerical process, a coordinate transformation 
is conducted. By introducing a new coordinate variable, q, as 
suggested by Verhoff and Fisher 11, 

x* = t a n ( ;  r/), (9) 

governing Equations 7 and 8 become 

( Bp(r/e)2)O0 A(r/)2020.F~ 0 ( 00"~ Z 2 
u*(~)A(r/)+ Or/ Pe ~ Or/2 ~¢ ¢ ~ ) + ~ ( G * - 0 " )  

0o) 

B(r/) 0G*_A(r/) 2 02G * _ _ ~  ~ 4  0 / 0G*\ . 
Pe 2 0r/ Pe 2 0r/2 ~ - ¢ 0 ~ \ ¢ ~ - , ]  - 3 z z ( G * - O ' )  (11) 

Accordingly, the boundary conditions will also transform to 

@ r/=0 0=0e=cons tan t  0 < ¢ <  1 (12a) 

3z 
OG*/O~I= , 4 0 < ¢ < 1  (12b) 2A(t/) (G --0~) 

@ l > r / > 0  0(¢=1=1 (12c) 

0G*/0¢1¢= 1 = 3 ~  z ( G * -  1) (12d) 
2(2-ew) 

00/0~I~ = o = 0 (12e) 

0G*/0~]¢=o = 0  (12f) 

where 

0=1 0 < ~ < 1  (12g) 

0G* 
. . . .  0 0 < ~ < 1  (12h) 
?.r/ 

B(r/)=! cos3(; r/)sin(; r/). 
(13) 

(14) 

The mean bulk temperature and Nusselt number 

The physical quantities of interest in heat transfer study are the 
mean bulk temperature and the Nusselt number. The mean 
bulk temperature is defined by 

0b(r/) = Io' 0(r/, ~)u*(~)~ d~ (15) 

and the Nusselt number is 

N u = N u c + N U = ~ b d ~ ¢ =  1 z / ew ' , 1 20bNk2--~ww) (G '~ - I )  (16) 

The subscripts, t, c, and r, represent total, convective, and 
radiative heat transfer, respectively. 

N u m e r i c a l  a n a l y s i s  

Equations 10 and 11 are nonlinear parabolic partial differential 
equations. If artificial velocities, u # and v # , and nonisotropic 
viscosities, F~', and F~'¢, are introduced, both equations can be 
written in standard form as 2° 

(17) 

where the quantities for each term in the above equation are 
documented in Table 1. 

The SIMPLE algorithm of Patankar 2° was applied for 
solving the above equations subjected to the associated boundary 
conditions. Equal space grids are used in both radial and axial 
directions. It should be noted that the axial coordinate has 
been transformed by a tangential function, which means having 
a small step size near the entrance region that grows larger 
downstream in the physical domain. The two equations are 
solved sequentially, and the iteration process is terminated 
when maximum variation of any nodal value (0 and G*) is less 
than 10- s in two successive iterations. To ensure the accuracy 
of the numerical solution, an independent grid size test has 
been conducted in this study. Table 2 depicts the results of this 
test with differential mesh sizes. The conductive-radiative 
parameter, optical thickness, and the Peclet number used in 
this test case are N = 0.2, z = 2, and Pe = 5, respectively. These 
data indicate that almost identical results can be obtained when 
the grid size is more than 40 × 20 (axial by radial). Therefore, 
the grid size 40 x 20 is mainly used throughout this study for 
computation of the Nusselt number. The number of iterations 
to achieve a convergence solution strongly depends on the 
Peeler number and not on the other parameters. The smaller 
the Peclet number, the more iterations are required. 
Approximately 250 iterations are needed for a Peclet number 
equal to 1, while approximately 100 iterations are needed for 
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Table  1 Variables defined in Equation 17 

Equation, q~ u # v # F ~  F~'~ So Sp 

1 (  B ' ~  1 A  = 1C 1C 
Energy equation, 0 u A  + 0 1 - -- G* - -  -- 03 

4 \ Pe =] 4 Pe a 4 N 4 N 

1 B 1 A  = 3 3 
Irradiation equation, G* 0 1 - r=0" - -  r = 

4 Pe 2 4 Pe = 4 4 

Table  2 The effect of grid size on the local Nusselt number 

X* 

M x N  

30 x 15 40 x 20 80 x 40 

Nu 

0.0056 23.4 25.6 25.8 
0.0170 12.1 12.0 11.7 
0.0512 8.26 8.24 8.22 
0.1030 10.4 10.4 10.4 
0.1510 13.1 13.2 13.2 
0.2660 16.8 18.0 17.8 
0.3870 17.4 21.9 21.4 

a Peclet number greater than 100. For  the case of a large z and 
small N, more grids have been employed due to the convergence 
problem. The number of grids used is more sensitive to 3, since 
the source term is proportional to "rZ/N. The 120 × 80 grid can 
give a convergence solution for the case of x2/N < 400. Relaxation 
coefficients have been used to further increase C/N. For 
example, with the relaxation coefficients equal to 0.7 for both 
equations, the convergence solution can attain a value of 
C/N < 80,000. However, CPU time will be tripled to satisfy the 
convergence criteria. 

A s s e s s m e n t  o f  t h e  v a l i d i t y  o f  t h e  
p r o p o s e d  m e t h o d o l o g y  

In order to assess the validity of the proposed methodology 
and the associated computer program, several limiting case 
solutions are documented in this paper. As mentioned earlier, 
no analytical and/or experimental data are available for the 
case of combined modes of heat transfer, including the effects 
of axial conduction and radiation with the boundary conditions 
of Equation 12. Therefore, the only available means for 
verification is through comparison with the limiting case 
solutions available from previous investigations. 

By setting N =  ~ ,  the problem reduces to a case of pure 
convection. Figure 2 shows a comparison of the Nusselt number 

N u  T 

30  

20  

10 

5 

1 

Figure 2 

_ _  Schrn id t  and  Zeld in  [ 1 0  l 

- - - -  P resen t  S tudy  Pi.5o 

P=-I0 

P~ l  

, , , l i b  
10 -~ l O  -= 10 -1 10 0 

X* 

Local Nusselt number variation for the case of no radiation 

variations in the entrance region with Schmidt and Zeldin. 1° 
The predicted values in this study are in excellent agreement 
with those given by Schmidt and Zeldin. 1° 

Comparisons of the limited case for the combined heat 
transfer model with large Peclet numbers are given in Figures 
3 and 4. Figure 3 shows a comparison of the predicted results 
between Echigo et al. t5 and the present study. The results of 
Echigo et al.15 are obtained from an integro-differential equation 
at Pe = 1,000, in which axial conduction and axial radiation in 
this region can be safely disregarded. This figure indicates some 
deviation in the immediate entrance region for both Nuc and 
Nut. The deviations between the two predictions reduce rapidly 
as x* increases. A comparison is also conducted with the results 
of Pearce and Emery 14 for a larger region in the axial direction, 
as shown in Figure 4. This figure further illustrates that the 
present radiative model can accurately predict the combined 
heat transfer behavior. 

N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

The problem of combined thermal radiation and forced con- 
vection heat transfer with axial heat conduction and axial 
radiation contains many physical parameters. The governing 

50 

4 0 - -  

3 0 - -  

2 0 - -  

1 0 -  

Nu 

~ \x N=0.5,3"=2 

\ \ \  

~X \ \  Nu c Nut - 

50 

4 0 - -  

3 0 - -  

2 0 - -  

1 0 - -  

0 

0 

'~,\ N=0.1,3"=2 

~ \  _Nu t  

I I I 
0.5 1 1.5 2.0 

X/Dh 
Echigo et al [15] 

- - P r e s e n t  Study 
Figure 3 Local Nusselt number variation for the case of no axial 
heat conduction and radiation 
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Nu T 
10- 

- -  Present Study 

/x ~ Peoree & Emery [14] 

Figure 4 

1 . . . . . . . .  r . . . . . . . .  } . . . . . . .  

. . . . . . . . . .  ×/ (RPe) . . . . . . . . . .  

Total Nusselt number variation for the case of axial 
radiation only 

Nu T 

Figure 5 

5 0 _  

4 0 -  

3 0 -  

2 0 -  

1 0 -  

0 

10 -4 

Pe=50 N = O. 2 

i i i i 

10 -3 10-2  I 0  - I  100 

X* 

Effects of the Peclet number on the total N usselt number 

equations and the associated boundary conditions indicate that 
the parameters controlling the problem are (1) the Peclet 
number, Pc; (2) the conductive-radiative parameter, N; and 
(3) optical thickness, r. The numerical solutions are generated 
for various combinations of these parameters, and the effects 
of N and 3 on combined heat transfer in a circular pipe are 
extensively studied. This paper focuses on the effects of the 
Peclett number, as well as its interactions with N and 3. 

The effects of the Peclet number on the local Nusselt number 
for flow inside the pipes are shown in Figure 5. The Peclet 
number represents the relative magnitude of thermal energy 
convected to the fluid and thermal energy axially conducted 
within the fluid. In this figure, the conduction-radiation 
parameter, N, and optical thickness, 3, are equal to 0.2 and 2, 
respectively. Seven different Peclet numbers ranging from 1 to 
1,000 have been used. Basically, these curves exhibit the same 
behavior as the nonradiative case, where a decrease in the Pe 
number results in an increase of the local Nusselt number. 
However, when the Peclet number reaches 1,000, Nu - x / ( D , P e )  
no longer depends on the Peclet number. It should be noted 
that unlike the nonradiative case, the curves in this figure 
demonstrate that a state of full thermal development is never 
reached (cf. Pearce and Emery, 14 Lii and Ozisik, 21 Yener and 
Fong, 16 and Campo and SchulertT). For instance, in the case 
of Pe=  I, the total Nusselt number curve attains a minimum 
value at a certain downstream location and beyond that point, 
Nu t increases again. This phenomenon can be explained by the 
fact that the Nusselt number contributed by convection decreases 
along the pipe, while the N u  contributed by radiation increases. 
Forced convection is dominant at the entrance region of the 
pipe. However, as the fluid passes through the pipe, radiation 
influences heat transfer behavior. This same tendency has also 
been observed by Pearce and Emery 14 and Yener and Fong. ~ 6 

Figure 6 illustrates the effects of the Peclet number on the 
transverse temperature profile at x = 2Dh. During calculations, 
N=0.2  and z = 2  are used. At very high values of Pe (1,000 
and 10,000), the convection is very strong and the inlet 
temperature is carried into the pipe in the core region for a 
considerable distance. In these two cases, the thermal boundary 
layer does not yet unify. However, unlike pure convection, the 
uniform temperature in the core region is slightly higher than 
the inlet temperature, 0e. This is due to energy absorption by 
radiation. As the Pe number decreases, a thermal boundary 
layer merger occurs at the centerline and the parabolic temper- 
ature profile appears. For low Pe numbers of 1 and 5, thermal 
radiation dominates the energy transport, and thermal 
uniformity is nearly reached. 

The effects of axial conduction and axial radiation on heat 
transfer in the thermal entrance region of a circular pipe are 
shown in Tables 3 through 5. Three cases are discussed in these 
tables: Case 1, with both axial conduction and axial radiation; 
Case 2, with axial conduction, but neglecting axial radiation 
(one-dimensional radiation model); and Case 3, which neglects 
both axial conduction and radiation. Table 3 illustrates the 
interaction between the Peclet number and conduction-radiation 
parameter, N, in the thermal entrance region with optical 
thickness, z = 3. It is worth noting that neglecting axial energy 
transfer will overestimate the heat transfer rate in the immediate 
entrance region and underestimate it downstream. The over- 
estimate region for Case 3 is usually much shorter than that 
for Case 2. Furthermore, the Nu number deviation of Case 3 
from Case 1 is much higher than that of Case 2 for both the 
overestimate and underestimate regions. This phenomena is 
mainly due to the axial temperature gradient forcing the energy 
transfer in a downstream direction. It is also worthy to note 
that for the case of weak radiation, axial conduction plays an 
important role on heat transfer, and axial radiation is not so 
significant. For example, at the Pc= 5 and N = l conditions, 
neglecting axial conduction can result in a 55 percent over- 
estimation of the Nusselt number in the immediate entrance 
region, while the Nusselt number deviation is only 3 percent 
when neglecting axial radiation. However, in a condition of 
strong radiation, neglecting axial radiation can result in a 
significant error in the entrance region, as observed in Cases 2 

0 
0 

Figure 6 

1 . 0  Pe=l  

0.8 

0.6 I 20 

o.o 
I 

0.5 0 i 0.5 

r /R r /R 

Effects of the Peclet number on the temperature profile 
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Table 3 Total Nusselt number affected by the interaction of Peclet number and conduction-radiation parameter 

Pe=5 ~=3.0 

N = 1.0 N = 0.25 N = 0.1 

x 1" 2t  3t  1" 2t 3~ 1" 2t  3t  

0.001 7.03 7,24 10.90 8.87 9.95 12.70 12,6 16.6 16.7 
0,004 6.68 6.87 7.44 8.64 9.65 9.31 13.6 16,6 13.4 
0.012 6.02 6.18 5.48 8.43 9.20 7.58 14.6 17.1 12.8 
0.020 5.67 5.79 4,97 8.55 9.09 7.41 16.9 18.0 14.3 
0.041 5.32 5.36 4.73 9.60 9.50 8.44 23.5 21.3 21.6 
0.070 5.34 5.31 4.96 11.40 10.60 10.70 29.1 25.6 29.4 
0.102 5.59 5.44 5.32 12.90 11.80 12.90 31.6 28.7 32.7 
0.131 5.85 5.61 5.59 13,90 12.80 14.30 32.5 30.3 33.1 
0.150 6.03 5.72 5.73 14.30 13.30 14.80 32.9 31.0 33.2 

Pe=20 r=3 ,0  

N = I . 0  N=0.25 N=0.1 

x 1" 2t  35 1" 2t  35 1" 2t  35 

0.001 10.10 10.20 11.20 11.70 12.00 13.00 14.7 16.0 16.7 
0.002 8.61 8.66 8.42 10.30 10.50 10.20 13.5 14.6 14.0 
0.005 7.08 7.11 6.68 8.87 9.05 8.50 t 2.7 13.4 12.5 
0.007 6.46 6.48 6.09 8,34 8.46 7.96 12.6 13.1 12.2 
0.011 5.73 5.74 5.53 7.87 7.85 7.51 13.0 13.1 12.3 
0.015 5.34 5.33 5.11 7.62 7.60 7.28 13.9 13.6 12.9 
0.021 5.06 5.05 4.87 7.60 7.54 7.29 15.3 14.6 14.1 
0.041 4.77 4.76 4.67 8.50 8.33 8.23 22.8 20.7 20.7 
0.070 4.95 4.92 4.90 10.80 10.30 10.30 29.9 28.1 28.7 
0.100 5.25 5.20 5.19 12.90 12.40 12.50 32.0 31.7 32.8 

Pe = 200 ~ = 3.0 

N = I . 0  N=0.25  N=0.1 

x 1" 2t  35 1" 2t  35 1" 2 t  3t 

0.0001 23.80 23.80 23.80 25.60 25.70 25.70 29.2 29.5 29.5 
0.0003 16.50 16.50 16.10 18.30 18.40 18.00 21.9 22.0 21.7 
0.0005 13.80 13.80 13.50 15.60 15.60 15.40 19.2 19.3 19.0 
0.0010 14.00 14.00 13.90 12.70 12.80 12.60 16.3 16.4 16.3 
0.0020 8.71 8.70 8.66 10.50 10.50 10.40 14.1 14.1 14.1 
0.0040 7.06 7.06 7.04 8.85 8.84 8.82 12.7 12.7 12.6 
0.0070 6.04 6.04 6.03 7.89 7.89 7.88 12.1 12.0 12.0 
0.0100 5.53 5.53 5.52 7.47 7.47 7.46 12.1 12.0 12.0 
0.0300 4.58 4.68 4.68 7.48 7.48 7.48 16.2 16.1 16.1 
0.0500 4.69 4.69 4.69 8.67 8.67 8.67 21.5 21.5 21.5 

* With axial conduction and axial radiation. 
t With axial conduction without axial radiation. 
5 Without axial conduction and axial radiation. 

Table 4 Contribution of convection and radiation on total Nusselt number (Pe=5, ~=3.0, N=0.1 ) 

Case 1 Case 2 Case 3 

Nu , Nu, Nu t Nu c Nu, Nu, Nu c Nu , Nu t 

0.001 6.49 6.14 12.64 7.07 9.50 16.6 9.65 7.05 16.7 
0.004 6.20 7.75 12.95 6.76 9.80 16.6 6.21 7.23 13.4 
0.012 5.90 8.73 14.60 6.32 10.70 17.1 4.62 8.21 1 2.8 
0.020 5.88 11.1 0 16.90 6.10 11.90 18.0 4.56 9.70 14.3 
0.041 5.80 17.70 23.50 5.95 15.30 21.3 4.44 17.20 21.6 
0.070 5.71 23.30 29.10 5.81 19.80 25.6 4.27 25.10 29.4 

and 3 for P c = 5  and N = 0 . 1  conditions. Derived from the 
assumption of the boundary layer flow, Sparrow and Cess 22 
have proposed a criterion, NPe>> 1, to determine when axial 
radiation is negligible. F r o m  Table 3, it is evident that axial 
radiation can safely be neglected when PeN > 20, as shown in 

the Case 2 for the conditions of Pe = 20, N = 1, or Pe = 200, 
N = 0.1. However, axial conduction cannot be neglected in Case 3 
for conditions of Pe = 20 and N = 1, since Pe < 50, as mentioned 
in Figure 5. 

The data  in Table 3 illustrate the same tendency as in the 
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T a b l e  5 Nur affected by the interaction between Peclet number and optical thickness 

Pe = 5, N = 0.25 

~=1 ~=3 r = 1 0  ~=20 

2 3 1 2 3 1 2 3 1 2 3 x 1 

0.001 6.94 7.20 10.90 8.87 9.95 12.70 13.3 15.8 16.8 15.7 18.3 19.2 
0.004 6.58 6.83 7.42 8.64 9.65 9.31 13.8 15.3 12.8 16.3 17.4 14.1 
0.012 5.91 6.15 5.48 8.43 9.20 7.58 15.5 14.7 10.9 17.6 16.1 11.8 
0.020 5.54 5.78 4.98 8.55 9.09 7.41 16.8 14.7 11.2 18.3 15.9 12.2 
0.049 5.15 5.37 4.74 9.60 9.50 8.44 18.9 16.2 15.0 19.7 17.4 17.0 
0.070 5.22 5.35 5.02 11.40 10.60 10.70 20.5 18.8 19.4 21.0 20.3 22.0 
0.102 5.57 5.57 5.52 12.90 11.80 12.90 21.5 20.8 21.0 22.1 22.4 24.5 
0.131 6.02 5.83 6.00 13.90 12.80 14.30 22.2 21.8 22.3 22.8 23.3 24.9 
0.150 6.39 6.03 6.31 14.30 13.30 14.80 22.4 22.4 23.6 23.1 23.7 24.9 

Pe= 20, N=0.25  

z = l  r = 3  r = 1 0  r = 2 0  

x 1 2 3 1 2 3 1 2 3 1 2 3 

0.001 10.10 10.20 11.20 11.70 12.00 13.00 14.7 16.3 16.9 16.6 18.9 19.3 
0.002 8.56 8.64 8.40 10.30 10.50 10.20 13.6 14.4 13.7 15.6 16.3 15.2 
0.005 7.04 7.10 6.67 8.87 9.05 8.50 12.5 12.5 11.6 14.1 13.8 12.7 
0.007 6.41 6.47 6.08 8.34 8.46 7.96 12.1 11.8 11.0 13.5 12.9 11.9 
0.011 5.70 5.74 5.45 7.87 7.85 7.51 11.6 11.2 10.5 12.8 12.1 11.4 
0.015 5.30 5.33 5.11 7.62 7.60 7.28 11.6 11.0 10.5 12.7 12.0 11.4 
0.021 5.04 5.05 4.88 7.60 7.54 7.29 11.9 11.3 10.9 13.1 12.4 11.9 
0.041 4.78 4.76 4.68 8.50 8.33 8.23 15.4 14.7 14.7 17.4 16.6 16.7 
0.070 4.99 4.93 4.90 10.80 10.30 10.30 19.7 19.1 19.1 21.9 22.2 22.3 
0.100 5.36 5.22 5.21 12.90 12.40 12.50 21.3 20.9 20.5 23.8 24.2 24.7 

Pe = 200, N = 0.25 

~=1 r = 3  ~=10 z=20 

x 1 2 3 1 2 3 1 2 3 1 2 3 

0.0001 23.80 23.80 23.70 25.60 25.70 25.70 30.4 30.7 30.8 34.4 35.5 35.5 
0.0003 16.50 16.50 16.10 18.30 18.40 18.00 22.9 23.0 22.5 26.4 26.5 25.9 
0.0005 13,80 13,80 13.50 16.60 15.60 15.40 19.9 19.9 19.6 22.9 22.8 22.5 
0.0010 10,90 11.00 10.80 12.70 12.80 12.60 16.7 16.6 16.5 18.9 18.8 18.7 
0.0020 8.68 8.70 8.64 10.50 10.50 10.40 14.0 13.9 13.9 15.5 15.5 15.4 
0.0040 7.05 7.07 7.03 8.85 8.84 8.82 12.0 12.0 11.9 13.1 13.1 13.1 
0.0070 6.04 6.05 6.02 7.89 7.89 7.88 10.9 10.9 10.9 11.8 11.8 11.7 
0.0100 5.52 5.52 5.51 7.47 7.47 7.46 10.5 10.5 10.4 11.3 11.3 11.3 
0.0300 4.66 4.70 4.66 7.48 7.48 7.48 12.2 12.2 12.2 13.5 13.5 13.5 
0.0500 4.66 4.72 4.66 8.67 8.67 8.67 16.2 16.2 16.2 18.5 18.5 18.5 

discussion for Figure 5; i.e., the total Nu decreases at the inlet 
and reaches a minimum value, then increases again. However, 
when P e = 5  and N=0.1,  a different trend is shown. In this 
case, the Nu continuously increases along the axial direction. 
The reason for this tendency can be explained by Table 4. Table 4 
breaks down the total Nusselt number into two parts: the heat 
transfer contributed by convection, Nu c, and the heat transfer 
contributed by radiation, Nu,. The convection contribution 
shows the same trend as in the condition of pure convection 
heat transfer in which the Nusselt number decreases as x 
increases. However, the radiation contribution increases much 
faster than the decrease of the convection contribution, which 
results in a continuous increase for the total Nusselt number. 
These phenomena occur only in the case of a small Peclet 
number with strong thermal radiation. 

Figure 7 illustrates the interaction of gas optical thickness 
and the Peclet number effect on the thermal heat transfer 
behavior in the entrance region. Parameter z is the measure of 

the capability of the medium to absorb radiation. In Figure 
7a, conduction-radiation parameter, N, and the Peclet number 
are equal to 0.25 and 200, respectively, in which the axial energy 
transportation can be neglected. This figure indicates that 
initially the total Nusselt number increases as ~ increases. 
However, for a very large optical thickness, Nu decreases as 
increases, since the medium becomes too thick for electro- 
magnetic waves to penetrate. Therefore, the case of • = ~ is 
the same as that of z = 0. At Pe = 5, the case with a strong axial 
energy transport, the Nu - ' c  relation exhibits a different behavior 
from Pc=200, as seen in Figure 7b. At small z (z= 1), the 
Nusselt number decreases and then rises, which is similar to 
that found in Pe = 200. When z = 3, the Nu rises sharply after 
passing the saddle point. When z=  10 and 20, the Nu con- 
tinuously rises from the beginning and no saddle point exists. 
Table 5 shows the effects of the interaction of the Peclet number 
and the optical thickness on heat transfer behavior. The same 
three cases discussed in Table 3 are used. One thing worth 
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Effects of the interaction of Pe and z on the total Nusselt 

noting when axial radiation is neglected, the Nu variation 
increases as z increases. For  example, in the case of Pe = 20, 
N =0.25,  the deviations at the inlet are 1,2.6, 11, and 14 percent 
for the cases of r = 1, 3, 10, and 20, respectively. However,  axial 
energy transfer can safely be neglected when PeN > 50 at all 
values of z, since deviations can be controlled at 3 percent. 

C o n c l u s i o n  

Combined thermal radiation and laminar forced convection 
with axial conduction and axial radiation in a circular pipe 
have been investigated. Thermal radiation is modeled by the 
method of moments.  The governing equations are transformed 
by an inverse tangent transformation to convert  the infinite 
boundaries to finite boundaries. The working governing equa- 
tions are solved by applying the S I M P L E  algorithm. The effects 
of the Peclet number,  conduct ion-radia t ion parameter,  and 
optical thickness on heat transfer behavior in the thermal 
entrance region of a circular pipe have been investigated. The 
study shows that the Peclet number  is the first important  
parameter when considering the effects of axial conduction and 
axial radiation. Furthermore,  the contributions of optical 
thickness, z, and the conduct ion-radia t ion parameter,  N, on 
heat transfer will be enhanced as the Peclet number decreases. 
The results also show that the criterion to neglect axial radiation 
may also be related to the optical thickness, 3, especially at the 
small Peclet number.  However ,  axial thermal radiation can be 
safely neglected when PeN > 50. 
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